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Stokes flow past a slender body of revolution 

By JAMES GEER 
School of Advanced Technology, State Thiversity of New York, Binghamton 

(Received 10 December 1975 and in revised form 24 May 1976) 

The complete uniform asymptotic expansion of the velocity and pressure fields 
for Stokes flow past a slender body of revolution is obtained with respect to the 
slenderness ratio E of the body. A completely general incident Stokes flow is 
assumed and hence these results extend the special cases treated by Tillett 
(1970) and Cox (1970). The part of the flow due to the presence of the body is 
represented as a superposition of the flows produced by three types of singularity 
distributed with unknown densities along a portion of the axis of the body and 
lying entirely inside the body. The no-slip boundary condition on the body then 
leads to a system of three coupled, linear, integral equations for the densities of 
the singularities. The complete expansion for these densities is then found as a 
series in powers of E and E log E .  It is found that the extent of these distributions of 
singnlarities inside the body is the same for all the singular flows and depends 
only upon the geometry of the body. The total force, drag and torque experienced 
by the body are computed. 

1. Introduction 
We wish to discuss the slow steady motion of a viscous incompressible fluid 

with negligible inertial forces, i.e. Stokes flow, past a slender body of revolution. 
We shall &ssume that the body is immersed in a prescribed flow field which must 
satisfy the appropriate equations for Stokes flow but which is otherwise corn- 
pletely arbitrary. The slenderness ratio E of the body, which is defined as the ratio 
of half the maximum diameter of the body to its length, will be assumed to be 
small. We shall obtain the complete uniform asymptotic expansion for the 
resulting flow field with respect to the parameter E as it approaches zero. Here we 
are concerned only with the Stokes solution to our problem, and not the far-field 
(Oseen) solution. 

The problem of determining Stokes flow past a slender body of revolution has 
been studied recently by several researchers. For example, Cox (1970, 1971) and 
Keller & Rubinow (1976) have presented general theories for the creeping motion 
of long slender bodies in a viscous fluid. They both use the method of determining 
inner and outer expansions and then matching the results. Batchelor (1970) has 
presented results for a slender body of arbitrary (not necessarily circular) cross- 
section in Stokes flow. Again his method is essentially that of analysing ‘inner’ 
and ‘outer’ flow fields. We shall not use inner and outer expansions here ; instead 
we obtain a uniform expansion for the solution. 

37 F L M  78 
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In  $ 2, the basic equations and boundary conditions for Stokes flow are stated 
and the general problem to be solved is formulated. In  $ 3, we first show how the 
general problem with arbitrary flow incident upon the body can be analysed by 
considering just the individual Fourier components of the incident and perturbed 
flow fields. Then we represent that part of the total flow due to the presence of the 
body as a superposition of the flows due to point singularities. The no-slip 
boundary condition then allows us to write down a system of three coupled, 
linear, integral equations, from which we shall be able to determine the unknown 
densities of the singularities, as well as the extent of their distributions. This idea 
was used by Tillett (1970), who obtained the leading terms in a uniform expansion 
for the special case of a uniform incident flow. We shall see that all of the integrals 
which appear in these equations are of the type already analysed by Geer (1975) 
and Handelsman & Keller (1967a, b) .  

In $3 4 and 5,  we determine the distribution of the singularities inside the body. 
In  $ 4, we determine their extent by applying the criterion given by Geer (1975). 
In  particular, we show that the extent is the same for each type of singularity we 
consider and is the same as that obtained in the corresponding potential-flow 
problem (Geer 1975). In  $5,  we use the expansions (given in appendix B) of the 
integral operators appearing in the equations to determine the asymptotic ex- 
pansions for the densities of the distributions of singularities. These expansions 
involve integral powers of both E and log E .  

I n  $6, we use the results of the previous sections to determine the complete 
velocity and pressure fields for the examples of a uniform flow and a purely 
shearing flow incident upon the body. In  the final section, we derive formulae for 
the total force and torque experienced by the body when i t  is immersed in an 
arbitrary incident flow field. 

2. Formulation of the problem 
We introduce cylindrical co-ordinates (r, 8, z )  in the usual way, with the z axis 

coinciding with the axis of the body. Let the equation of the surface of the body be 
described by T = (x2+y2)8 = E [ # ( z ) ] ~ ,  for 0 < z < 1. Here S(z) is a prescribed 
function which satisfies max S(z) = 1 for 0 < z < 1. We shall assume that S(z) is 
regular on the interval 0 < z < 1 with S(0) = 0 = S(  1) and that it can be expanded 
in a Taylor series about the end points as follows: 

m S(") (0)  
S(z) = c CnZ", c, = - 

n = l  n!  ' 

co ( - l)nS(n) (1) 
S(Z) = d,(l-z)n, dn = 

n=l  n !  

We shall assume that c1 $: 0 + 4, i.e. that the radius of curvature at each end of 
the body is non-zero. 

Now let p and v = (v,, vg, v,) be the non-dimensionalized pressure and velocity 
of our fluid. Here v,, v, and v, are the components of the velocity field in the r, 8 
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and z directions, respectively. Then the equation of motion (in the absence of 
body forces) for Stokes flow and the continuity equation can be written as 

vp = v2v, v . v  = 0. (2.3) 

The no-slip boundary condition on the body and the condition at infinity can be 
written as v = 0 on r = e[S(z)]f  for o < z < 1, 

and v+vo, p+po as r2+z2-+oo. (2.5) 

In  (2.4) and (2.5), vo and po are prescribed functions. Thus our task is to find an 
asymptotic expansion of the solution to (2.3)-(2.5) as e+ 0. 

3. Derivation of the integral equations 
Now let a flow field which satisfies (2.3) and which is described by a pressurepo 

and a velocity vo be incident upon the body. We shall assume that p0 and vo are 
regular in a neighbourhood of the body. We now seek functions p b  and vb, which 
we may think of as the disturbance or perturbation pressure and velocity due to 
the presence of the body, that are solutions to (2.3) outside the body and that 
satisfy the conditions 

vb = - vo on r = s[S(z)]4 for o < z < I, (3.1) 

and pb,vb-+O as r2+z2+cu. (3.2) 

Then p = p0 + p b  and v = vo + vb will satisfy the problem formulated in Q 2. 
I n  order to find a suitable representation for pb and vb, we first look carefully 

at the general form of po and vo. From (2.3) it  follows that V2po = 0 in a neigh- 
bourhood of the body. Thus it follows that, for z in a neighbourhood of 0 < z < 1 
and for small r, po has an expansion 

In  (3.3), each 2, and 8, is a prescribed function, regular in r2 and z for (at least) 
z in a neighbourhood of 0 < z < 1 and small values of r. By linearity and super- 
position, we need to consider only the case when po has the form of one of the 
terms in (3.3), i.e. when 

po(r,8,z)  = rnA,(r2,z)eiM (n 3 0). (3.4) 

When p0 is given by (3.4) (where A,(r2, z )  is a prescribed regular function of r2 

and z) ,  the corresponding expressions for vo can easily be found to be 

(3.5) (v:, v$, v!) = - r. 1 cine ( f u r 2 ,  4, iC,(r2, 4, rD,(r2, 2)). 

Here B,, C ,  and D, are prescribed functions of r2 and z. B, and Co are O(r2) as 
r+  0. I n  what follows, only the case n 2 1 will be treated in detail. The results 
for n = 0, which are similar to the results of Tillett (1970), will be given in 
appendix A. 

Now, in order to find the functions pb and vb corresponding to  the expressions 
37-2 
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in (3.4) and ( 3 4 ,  we seek to represent p b  and vb as the superposition of flows due 
to ‘appropriate’ point singularities distributed along a portion of the axis of the 
body and lying inside the body. To find hhese ‘appropriate’ (in general, higher 
order) singularities, we look for solutions to (2.3) which are proportional to cine 
and also proportional to ( ~ ~ + r ~ ) - ~ ,  where k > 0. By a straightforward, though 
tedious, calculation we find three ‘singular’ solutions to (2 .3) ;  they have the 
general form vb = R-2nrn-1 eine(8, ,  ic,, 14,) and p b  = R--2n-1rn eineA,, where 
A,, B,, en and b, take the three sets of values 

2 - n  R, b, = R-lrz, 
2n-  1 (3.6) A, = 2,  Bn = R c, = - 

A, = 0,  B, = R-3r2, en = - R-3r2, b, = R-%-z, (3.7) 

An = 0, B, = R-12, 6, = R-lz, Dm = - R-1r. (3.8) 

In  (3.6)-(3.8), R = (r2+z2)&, Of course, these solutions are only valid for R i. 0. 
We now represent v b  as the superposition of the flows described by (3.6)-(3.8), 

distributed with unknown densities along a portion of the z axis lying inside the 
body. Thus, for example, we set (for n 2 1) 

with analogous formulae holding for ve and v,. In  ( 3 . 9 ) ,  R is now given by 
R = { (z  - EJ2 + r2}4, while 27, 8 and d are the unknown densities of the singular 
flows. a and p, which actually depend upon E and determine ithe extent of the 
distributions, are unknown and must be found in addition to the unknown 
densities. They must satisfy the inequalities 0 < a < /3 < 1. The pressure pb 

corresponding to (3.9) is given by 

p v ,  e,z,  4 = eid R2n+l 27(5,4 d5. (3.10) 

The expressions for vb and p b  given by (3 .9)  and (3.10) satisfy (2 .3)  outside the 
body and vanish at infinity. In  order to determine the unknown quantities in 
(3.9) we use the boundary condition (3.1).  When (3.9) and the analogous formulae 
for v$ and v: are used with ( 3 4 ,  (3.1) becomes 

s.” 2rn 
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with analogous equations holding for n = 0. Here R = s2S(z) + (z  - E)2. Equations 
(3.11)-(3.13) are a set of coupled linear integral equations, from which we shall 
determine @, & and a, as well as a and P. 

4. Determination of a and /3 
We now wish to determine the uniform asymptotic expansion, as E approaches 

zero, of the solution to (3.11)-(3.13). We shall show in the next section how this 
can be done by using the method of Handelsman & Keller (1967 a) and Geer (1975). 

The first step in solving (3.11)-(3.13) asymptotically is to expand both sides of 
each equation asymptotically as E approaches zero, without taking into account 
the dependence of @, 6 and d upon E .  The left side of each of these equations can 
easily be expanded in a Taylor series in e2. Geer (1975) has shown how each of the 
integrals appearing in the right sides of (3.11) - (3.13), i.e. integrals of the form 

wherej = 0 , l  and k = 0, 1,2, . . . , can be expanded uniformly in a series involving 
powers of E and powers of E multiplied by log E .  In  particular, it was shown that 
the requirement for a uniform expansion of these integrals leads to a choice of 
a(€) and P(E)  which is independent of k. Hence a(€) and B(E)  have asymptotic 
expansions as E approaches zero given by (see Handelsman & Keller 1967a) 

The constants cj and d, which appear in (4.2) and (4.3) are defined in (2.1) and 
(2.2). Hence, the extent of all of our distributions of singularities is now deter- 
mined. 

Before we actually determine the asymptotic expansions of our singularity 
densities in the next section, it is convenient to rewrite our system so that the 
kernels are less singular as E +  0. That is, by forming certain linear combinations 
of (3.11)-( 3.13), we can make the exponent of (z  - .EJ2 + s2S(z) smaller by one in 
all of the kernels in (3.11)-(3.13). In  particular, multiplying (3.11) by e2Sr(z), 
where the prime represents differentiation, and (3.13) by 2e28(z) and adding, we 
obtain 

s2S(z )  B(.ZS(z), 2 )  + 2€2S(Z) 0(.2S(z), 2 )  

- 2e2 S(z) d 1 2 - n e2Sr(z)] ~ ( E ,  E )  +-- 
2n- 1 dzRn-4 2n- 1 Rn-* 
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Multiplying (3.11) by 2 and (3.13) by e2s'(z) and subtracting, we obtain 

Finally, subtracting (3.1 1 )  from (3.12) and multiplying the resulting equation by 
(S(z))-l {E~(S'(Z))~ + 48(2)},  we obtain 

{€2(8 ' (z ) )2  + 48(2)} {C(€'8(z), 2 )  - B(.28(z), z ) } / s (z )  

+L [ ~ E ~ S ' ( Z ) ~ F ~ -  d l  16n---- Rn+& 1 8d dzRn+) "-'I 6(c,e))dE. (4.6) 
2n+ 1 

We shall now use (4.4)-(4.6) to solve for p ,  6, and d. 

5. Asymptotic solution of the integral equations 
We can now easily find the asymptotic expansion as e-+O of the solution to 

(4.4)-(4.6). Following the method of solution outlined at the beginning of $4, we 
employ the expansions of I i ( z ,  e )  given by 

for j = 0, 1, k = 0, 1 ,  2 ,  . .. . Here L,k*j and GF*j are certain linear operators 
which are defined in appendix B in terms of the operators LF5 and f7:j (j = 0 , l ;  
r 2 0 )  given by Handelaman & Keller (1967a, b ) .  

We begin by defining new unknowns p ,  b and d by 

(5.2) J @(z, 6 )  = (2 - a(s))n-l(/3(e) - z)n--1p(Z, €), 

6(z, E )  = (2 - a(€))" (#5(€) - z)"b(z, €), 

d ( ~ ,  C) = (Z - C C ( E ) ) ~ - ~  (P(s) - z ) ~  d(z, e ) .  

The factors of the form (z - have been included in (5.2) because 
of the second requirement for the uniform expansion of the integrals If given by 
Geer (1975). I n  particular, it was shown that, in addition to the requirement on 
a(.) and P(s) used in $ 4 ,  i t  is both necessary and sufficient to require that f i n  
(4.1) vanishes to degree k at the end points of integration. That is, we must require 
that f(z, 8) = (z  - a)k (p - Z ) ~ ~ ( X ,  c), where f is finite at a and /3. Examination of 
(4.4)-(4.6) reveals that the value of k associated with j5 and dis  n- 1, while that 
associated with 6" is n. 

Since we have already determined a and /3 we see from (5 .2 )  that $,6 and dwill 
be determined once the expansions forp, b and d have been found. However, as we 

(P(B) - 
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shall see below, the form of the asymptotic expansion of these functions depends 
on whether n = 1 or n > I ,  and so we consider these two cases separately. 

For n = 1, the results(B 3) and (B 6) of appendix B show that the leading terms 
in the expansion of the integral operators on the right side of (4.4)--(4.6) are 
logarithmic in e2 [e.g. 2 log e2p(z,  E )  - 2 log s2d[d(z, E ) ] / ~ z  on the right side of 
(4.5)]. This fact, coupled with the form of the expansions (5.1) and the fact that 
the left sides of (4.4)-(4.6) can be expanded in Taylor series in e2 about E = 0, 
suggests that we look for asymptotic expansions for p ,  b and d of the form 

m ca A i  

(5.3b) 

(5.34 

To determine the coefficients p ,  k ,  b ,  and dj, k in (5.3), we first expand each 
side of (4.4)-(4.6) with n = 1, using either Taylor’s theorem or (5.1), and then 
insert the expansions (5.3) and collect coefficients of terms of the form s2j(log @)-k. 

In  this way, we are led, after some manipulation, to the following system of 
equations: 



From (5.4)-(5.8) a11 of the coefficientspj,,, b j ,k  and dj, k can be determined recur- 
sively. In  particular, using (5.4)-(5.8) we h d ,  f o r j  = 0, 

Po, 1(4 = -w, 4, (5.9a) 

(5.9c) 

do, k ( 4  = @(.)Pi, k ( 4  - t f l W P 0 ,  k(Z) ,  ( 5 . 9 4  

fork 2 1. 
It is interesting to note that C(r2, z), which determines the 8 component of the 

incident velocity field, does not appear in (5.4)-(5.8). Only B(r2, z )  and D(r2, z )  
appear in (5.4) via the functions gj. However, from the continuity equation, we 
see that C can be expressed explicitly in terms of B and D and hence all the 
essential information about the incident flow is contained in D and B. 

For n 2 2, the expressions (B 13) and (B 15) of appendix B indicate that the 
leading terms in the expansion of the right sides of (4.4)-(4.6) are now alge- 
braically singular in c2 (e.g. the leading term involving b(z, e )  on the right side of 
(4.5) is O(e-2nb(z, e) ) .  Hence the form of the expansions (5.1) now suggest that we 
seek asymptotic expansions of p ,  b and d of the form 

m i  

(5.10a) 

m i  

In  a manner completely analogous to that described above, we substitute 
(5.10) into (4.4)-(4.6), perform the necessary expansions and collect coefficients 
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of like terms to obtain the following set of relations: 
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In  (5.13)-(5.15), we define b , ,  = as,, = p,s,t = 0 if s < t ,  s < 0 or t < 0. Also, 

while gj(z) is defined by (5.8). 

b ,  and dj,k can be determined 
recursively. In particular, setting j = Ic = 0 in (5.11)-(5.15) and using (5.16), 
(5.17) and (5 .8 ) ,  we find 

(5.1 8 a)  

From (5.11)-(5.17), all of the coefficients 

[(n - 2 )  !I2 
Po, o ( 4  = ( 2 n  - 1) 

(5.18 b)  
[(n - 2 )  !]2 

+ (7) n + l  8(z)B,(O, 2) + 2X(z)  D(0,z)). ( 5 . 1 8 ~ )  

Equations (5.18) yield the leading terms in the asymptotic expansions of p, b 
and d i n  terms of the incident flow field. 

6. Examples: uniform flow and shear flow 
We now apply our results to the case of a, uniform incident flow. Thus we set 

(6.1) vo = U cos Si, - U sin Si, + Wi,. 

(Here i,, i,, and i, are unit vectors in the directions of increasing T ,  8 and z res- 
pectively.) Using the notation of (3.5), we can set 

(6.2) 
Bl(r2,z) = Ol(r2,z)  = - U ,  
Bo(r2, z )  = Oo(r2, z )  = 0, 

Dl(r2,z) = 0, 
Do(r2,z) = - W .  

We can then use (3.6)-(3.8) and (A 1)-(A 3) to represent vb by formulae analogous 
to (3.9). I n  this way, we obtain the following representation for the velocity field 
v = vo + vb and the pressure field p :  
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In  (6.3)-(6.6), we have set R = (r2 + (z - E)2)4, while f l ,  6, p ,  b and d represent the 
densities of the various singular flows. The leading terms in the asymptotic 
expansions of CI. = a(€) and B = ' ( E )  are given by (4.2) and (4.3). 

To  determine the leading terms in the asymptotic expansions of j3 and 6, we 
use the results stated in appendix A. Thus we find, after some simplification, 

m m 

k = I  k = l  
P ( Z ,  E )  z (log ~21-k po, k(~) + €2 x (logs2)-kpl, k ( ~ )  + 0(~4(10g ~y), (6.7a) 

( 6 . 8 ~ )  

In  obtaining (6.8), we have used (6.2) to compute uo = 2 W  and u1 = 0. 

j5 and 6 up to terms which are O(e*(log @)-l). 

When (6.8) and (6.9) are used in (6.7), they yield the asymptotic expansion of 
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To determine the leading terms in the asymptotic expansions of p ,  b, and d, we 
use (5.3)-(5.8). In  this way, we find, after some simplification, 

m OD 

~ ( 2 , s ) -  Z (logs2)-kpo,k(~) +s2 z (log8)-k~l,k(Z)+O(s4(l~gs2)-1), (6.10~) 
k=l k=l 

11t 

do,&) = -as’(4, dO,k(Z) = P~(~)P~,k(z)-~~’(z)Po,k(z) for k 2 2. (6.13) 

I n  obtaining (6.11) we have used (6.2) to compute go = 2U and g1 = 0. Also, in 
(6.11) we d e h e  G(z) = ~ S ’ ( Z ) ~ ~ , ~ ( Z )  - &!3(z)p&). 

When (6.11)-(6.13) and (6.8) and (6.9) areusedin (6.10) and (6.7), respectively, 
and then (6.10) and (6.7) substituted into (6.3)-(6.6), these expressions yield the 
asymptotic expansions of the velocity and pressure fields around the body up to 
terms which are O(s4(10g s2)-l). 
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As our second example, we consider a pure shear flow in which the flow is solely 
in a direction perpendicular to the axis of the body, say in the x direction, and 
varies linearly with y .  Thus, we set 

vo = ~rsin28i ,+~r(cos28-1)ie .  (6.14) 

Again using the notation of (3.5) and (3.6) we can set 

Bo(r2,r) = Do(r2,z) = 0, Co(r2,z)  = 4, (6.16a) 

and B,(r2,r) = C2(r2,z) = -4, D2(r2,x) = 0. (6.15b) 

Again, using the appropriate expressions from Q 3 and appendix A, we are led to 
the following representation for v and p :  

In  (6.16)-(6.19), R = ( r2+(z- lJ2) f ,  while a and are again given by (4.3) and 

To find the leading terms in the expansions (5.10) of p ,  b, d, and $, we use 
(4.4). 

(5.10)-(5.17) with n = 2 and (A 10)-(A 11) to obtain, after some simplification, 

P ( Z , E )  N -3- S(z) ( ( t . ,Z  + ( 4 4 4  [ z sqr )  
z(1-2) 
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d(Z,+*( (ge)2-  z(1-2) (peg("";(,"') - l]S"(z) 

(S'(0) + S'( 1)) z - S'(0) S(z) 
+ (1 - 2 z ) d  dz (a) ~ ( 1 - z )  + [- + S(z) 1- z(1-2) 

(6.23) 

When (6.20)-(6.23) are used in (6.16)-(6.19), these expressions yield the 
mymptotic expansion of the velocity and pressure fields around the body up to 
terms which are O(es(log E ~ ) ~ ) .  

7. Force and torque on the body 
We can now use our results to compute the total force P and torque fi exerted 

on the body. For these purposes, i t  is convenient to use a Cartesian co-ordinate 
system (z, y, z )  with the origin at one end of the body and the z axis coinciding 
with the axis of the body. 

The momentum theorem for Stokes flow (i.e. neglecting the inertial terms) 
shows that 

where the Cartesian components of Fb are given by 

P = p&'a(FO+ Fb), (7.1) 

Fi is given by the right side of (7 .2)  with cos 0 replaced by sin 8 and sin 8 replaced 
by - cos 8. Similar expressions hold for the components of FO, with vb replaced by 
vo and pb replaced by po. In  (7,1), p is the viscosity of the fluid, U is a typical 
velocity of the flow, and a is the (dimensional) length of the body. The formulae 
(7.1 )-(7.3) were obtained by using as a control volume the volume of fluid bounded 
by the surface of the body and a large cylinder of length 2aR and radius Ra, which 
is 'centred' a t  the body and which has its axis coinciding with the z axis. Here R 
is a (large) dimensionless number. Also, in (7 .2)  and (7.3) we have used the 
notation [G(r, z ) ] ~ = ~ ~ ~ ? R  = G(u, R) - G(u, - R). 
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Now the manner in which we 'Fourier analysed' both the incident and per- 
turbed flow fields in $3 and the formulae (7.2) and (7.3) allow us to make a useful 
observation. From (7.3.) and the orthogonality of the cos n8 and sin n8 functions, 
it  follows that the only component of vb andpb which can possibly contribute to 
F, is the component corresponding to n = 0. Hence, using (A 1)-(A 3), (7.3) 
becomes 

li': = - 6 )  d t .  (7-4) 

In  (7.4) we have placed a superscript zero on fi to remind us that this is the f5 
corresponding to n = 0. We can now substitute (5.3) in (7.4) and then expand 
the resulting integrals by Taylor's theorem to obtain the following complete 
expansion for FE: 

In  (74, the py, are determined by the formulae (A 7) and (A 8). 
I n  a similar manner, the only component of vb and pb which can contribute to 

Fj: or Fv is the component corresponding to n = 1. Hence, using (3.10) and the 
formulae analogous to (3.9) with n = 1, (7.3) yields 

if vs is proportional to cos 8, and 

if v," is proportional to sin 8. The superscript onp  in (7.6) and (7.7) is to remind us 
that $1 is the f5-density corresponding to n = 1. The complete expansions for 
I?: and can be found using (7.5) with p!, replaced by pi, k. Here the pj, are 
determined by (5.4) and (5.5). 

Thus, for any prescribed incident flow field, only the components of vb and p b  

corresponding to n = 0 and n = 1 need to be computed in order to determine the 
total force acting on the body, i.e. the components of Fb can be calculated from 
(7.4)-(7.7), while FO can be computed from the given incident flow. We recognize 
the integrals in (7.4)-(7.7) as just the total strength of the Stokeslet distributions. 

For our first example from the last section, i.e. a uniform incident flow, we can 
easily see that FO = 0. Thus, using formulae (6.7)-(6.8), (6.10) and (6.11) in 
(7.4) and (7.6), we fkd 

4Z( 1 - Z) 
- (log e2)-l- (log e2)-2 [ 1 +11 log 

0 x(z) 
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S'(o)[6+logfS'(0)]+ (/;-"-Jo ) [S'(z+v) -Sr(x) -S"(z)~]v-~dv dz 1 -- 
4 -2 

r;(y = 0, 

dzl Ps = 4np w u  1 - (log €2)-1- (log E y - 2  [ 1 - Jol log 4z&4 

4Z( 1 - Z) 
0 )  - s' ( 1) + lo1 ( s ( 2 )  log - 44 

+ ( lo1 - 2  -1:) [ s ' (z  + v) - s'(z)J 21-1 dv 

4Z( 1 - Z )  

2 

- 2  (J;-"-J".) [S(z+v)-S(z)-S'(z)v-S"(z)v2/2]v-~dv dz ) I1 
+ O(s2(log S y ) .  (7.10) 

Equations (7.8)-(7.10) give some of the leading terms in the asymptotic ex- 
pansion of the total force exerted upon the body by a uniform incident flow. Of 
course, more terms could be calculated using the recursion formulae in (6.8) and 
(6.11). The h t  two terms in each of these expansions were given by Tillett (1 970). 
In  comparing his formulae with ours, we must note that the length of his body is 
2u, whereas ours is just a. Of course, 8 = 0 for our second example. 

We can also obtain formulae analogous to (7.2) and (7.3) for the total torque 
m exerted upon the body. For this purpose, it is convenient to introduce two new 
axes, the x1 and x2 axes, which are parallel to the z and y axes, respectively, but 
which lie in the plane z = 8. We let XI, I?,, and f l s  be the components of R about 
the zl, x2 and z axes, respectively. Then, by using a result similar to the 
momentum theorem involving moments about these three axes, we can write 

R = ,U?JU~(NO+N~), (7.11) 
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where the components of Nb are given by 

277 R 
N!=lim R+m (lo I0 [s ine(2rg-rp-  

The expression for Ng is given by the right side of (7.12) with sin 8 replaced by 
- cos 8 and cos 6 replaced by sin 8. Similar expressions hold for the components 
of NO, with vb replaced by vo and pb replaced by PO. 

From (7.13) it  follows that the only component of vb and pb which can contri- 
bute to N: corresponds to n = 0. Hence, using (A 1)-(A 3), (7.13) becomes 

NE= - 8 7 ~  J : h E ,  4 d.5, (7.14) 

where J0 denotes the &density corresponding to n = 0 which appears in (A 3). 
Substituting (20 = (/I - [) ( f ;  -a) do, where do has an expansion of the form (5.10) 
with n = 1, in (7.14), we can write 

. , j  j l  
NE = - 8 7 ~ ~ ~  x s2J(loge2)k 2 - 

j = o  k=O (j - n) ! 

x [(-$y-nJ’(E) (z-a(e))(P(e) -z)d~,,(z)dz] E = O  , (7.15) 
at4 

which gives us a complete expansion for N:. In  (7.15), the d l k  are determined 
recursively from (A 10). 

In  a similar manner, we see that the only component of the perturbed flow field 
which can contribute to N! and Ng corresponds to n = 1. Hence (7.12) yields 

(7.16) 

and Ni  = 0, if v, is proportional to sin 8. Also Nl = 0 and N2 is given by the 
negative of (7.16) if up is proportional to cos 8. Again, the superscript on p and d 
indicates that these densities correspond to n = 1. The complete expansion of 
N t  can be found by using (7.5) with py, replaced by (z  - +)pi, &) + df-, k’ Here 
9Zk and are determined by (5.4)-(5.7). Equations (7.14)-(7.16) give us the 
components of Nb in terms of the densities calculated in 5 5. No can be computed 

38 FLM 78 



594 J .  Geer 

from the given incident flow field. In  particular, from (7.15), we see that N i  is 
O ( h )  and its leading term is given by 

Also, the first integral in (7.16) is just the first moment of the Stokeslet dis- 
tribution corresponding to n = 1. From (5.3) we see that this integral is only 
0((loge2)-l), while the second integral is O($+(log s2)-1). Thus, using (5.9), (7.15) 
yields 

n: = -8n(logs2)-1 (6-4)B(O, E)dE+O((log€2)-2), (7.18) 1: 
n o  l s2= B(0,x) = -- w~(o,O,z)sinBd@. 

where 

I n  our first example of 9 6, we see that No = 0 and also that N t  = N: = 0. Now 
using (6.11) and (6.13) in (6.10), (7.16) yields 

+ (so’-”-/:.) [S’(x+v) -S’(x)-S“(z)v]v-2dv 
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(1 - 2 4 2  (S’(o)+s‘(l))Z-s‘(o) S(z) +[-+ SM I- 
595 

+[S’(O)-(S’(l)+S’(O))z]---- ’(’) ] dz] + O(ss (log E ~ ) ~ ) .  (7.20) 

As before, more terms can be computed in (7.18) and (7.19) by using the recur- 

z(1-2) 

sion formulae in (6.11) and (6.13). 

This research was supported in part by the Research Foundation of the State 
University of New York. 

Appendix A 
I n  this appendix we state the results, for the case of n = 0, which correspond 

to the results in $93-5 above. I n  particular, the singular solutions for n = 0, 
corresponding to (3.6)-(3.8), can be found easily and lead to the following repre- 
sentation for vb and pb:  

The singular solutions used in (A 1) and (A 2) correspond to a Stokeslet and to 

We now use (3.5) with n = 0 in (3.1) to obtain equations analogous to (3.11)- 
an irrotational source. These are the singular solutions used by TiIIett (1970). 

(3.13). We can then rewrite these equations, as in $4, to obtain the equations 

d l  
dz RB 

- 2 - - &, E ) )  d[. (A 6) 

I n  (A 4)-(A 6) we have used the notation U = r 2 B 0 ,  V = ir-2Co, W = Do and 

We now look for asymptotic expansions for f5 and 6 in the form of the right side 
of (5.3), while we write d = ( z  - cc) (B - z)  d and look for an expansion of d in the 

R = E 2 S ( Z )  + (2 - <)2. 

38-2 
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form of (5.10) with n = 1. Thus, using the procedure outlined in $94 and 5, we 
are led to the following system of relations: 

(4GIo,pr, d d 
dz dz + 2 - G?2,._:pr, - 2 -GYC'r-l b ,  for j 0, 

(A 7) 

pi, = L$ 'pj, k - p j ,  k + k + G?2rpr, k+l  
r=O 

(A 8) 

0 1  0 0  0 0  +--(L%1 l a  
dz 3-7131; k + GjLrpr,  k+l  - LjLl--7 br, k - GjLl-r br, k+l  for > j 2 O ,  

I d  j-1 

b j , k ( Z )  = ZdZ(S(z)LI.opj,k-S(z)l)LBfl+ r=O [S(z)L?2rpr,k+S(Z) G?!rpr,k+l 

-I- LgL$br, k + Gg2r b ,  k+1]) for j 2 0, k 2 1, (A 9) 

j-1 

r=k-1  
wj(z) &k, 0 -  c (L).oT dr, k + G)Trdr, k-1) 

for j> 0, O <  k < j .  (AlO) 

(Here we define d8,t = 0 if s < t ,  s < 0, or t < 0.) In  (A7)-(A lo), ui and wj are 
defined by 

[2W(O,z) if j = 0, 

From (A 7)-(A 10) the coefficients pi, k ,  bj, k ,  and di, can be determined recur- 
sively. In  particular, from (A 8) and (A 9) it  follows that 

(A 1-21 
d 

bO,k (Z)  = & ( W ( Z ) P O , k ( Z ) ) ,  k 2 1 9  

while the po, are determined from (A 7) and (A 8) by 

Po, 1(z) = - W ( O , Z ) ,  

while from (A 10) we find 

In  obtaining (A 13) we have used the expression for the operator L t0  given by 
(B 7) in appendix B. 

The result (A 12) is equivalent to a result given by Tillett (1970), while (A 13) 
reduces to his results if we set W(r2, z )  = W (a constant). 
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Appendix B. The operators Lf“j and Gf” 
I n  this appendix, we present an explicit recurrence formula for the linear 

operators L,k. j and Glk,j, which appear in the expansion of I$(z, E )  defined by (5.1). 
More precisely, they are are coefficients of e2r and e2rlog e2 in the expansion of 

c2r(L>1+logc2G>1)P(z) if k = 0 and j = 1, (B 1) 

aD 

~ ~ ~ ( L , k . j + l o g ~ ~ G , k . j ) P ( ~ )  if Ic = 0 and j = 0 
r=O 

or k 2 1 and j =  0,l .  

Here we assume that a(€) and P(c) have expansions of the form 

where the coefficients an and Pn can be determined as described in 9 4. 
We will now show how we can express L$.j in terms of the operators L2m, 

with n < k.  (A similar result will hold for the operators Gf.j.) We begin by noting 
that, for k = 0, the operators L> and G$1 have been defined by Handelsman & 
Keller (1967a), while L!* O and G,”. 0 have been defined in Handelsman & Keller 
(19673). In  particular, we find 

L$lP(z) = lZ1 F([) d[ - /:F(LJ dE, G$lF(z) = 0, (B 3) 

+P(x) [ -- 1 - 2  - S(z)]  +S(z) {/ol-z- Srd {P(z + v) - P(z)  - P’(z) V} r2 dv 

X(2) (22 - 1) 
2 2 ( 1 - 2 )  

+ 

- ~ H ( Z )  ( / o l - z - / o  -2 ) {F(z + v) -2i ’ (z)  - F ’ ( z )  v- *F”(x) v2}v-3dv. (B 7) 
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Now, for k 2 0, we can write Ii+l in the form 

1 
2k+ 1 m z ,  s; (f - 4 4 )  (A4 - E )  P(5) + (k + 1) (B (4  + 44 - 25) P(E)), (B 8 )  - -- 

where we have used integration by parts in obtaining (B 8). Using the expan- 
sions (B 1) and (B 2) in (B 8) and comparing coefficients of terms of the form 
e2‘(log e2)n we obtain 

(2k + 1) L:+l. lP(2) = - L:. 0 ( 2 2 F ( Z )  + 2(k  + 1) zP(z) )  

The operators (2k + 1) G,k+l*l are given by the right side of (B 9) with Lf>O re- 
placed by Gj”. O. 

Also, we can write I$+, as 

for k 2 0. Integrating the last term by parts and then simplifying the result, 
(B 10) becomes 

I$+l(z, s; P) = [(2k + 1) s2S(z)]-l{I$(z, s; 2k(2 - a(€)) (P(€) - 2 )  P(z)) 

-I&,€; ( z - a ( s ) )  ( B ( s ) - z ) P ’ ( z ) + ( k +  l ) [a(s)+~(E)--zlP(Z))} .  (B 11) 

Again using the expansions (B 1) and (B 2) in (B l l ) ,  we are led to the relation 

(2k + 1) X(Z) “P(z) = 2k 

I) + 5 [(/Ir, +ar-j)LpyzP(z)) - x ~ i i r - j - i q o P ( 4  
r - j  

i = o  i = O  

[L:+(z2F’(z) + 2(k+ 1) ZP(2)) 
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In  (B 12), we define Lk_il = 0. The operators (2k+ l ) S ( x )  G,k+l,oP(z) are givenby 
the right side of (B 12) with LF*j replaced by G,k.j. Equations (B 9) and (B 12) 
are the desired recurrence relations. They express L;+l)j and G;+l~j  in terms of 
L$ and GF8. Thus these relations and the operators defined by Handelsman & 
Keller serve to define all of our operators L,k, j and G,”. j. 

In  particular, we can now use (B 9) and (B 12) with (B 3)-(B 7) to calculate a 
few of these operators. In  this way we find 

G$lP(x)  = d[z(l -z)P(z)]/dz, Gok,1P(z) E 0 for k 2, (B 13a) 

G$OP(z) E 0 for k 2- 1, (B 13b) 

G? ‘P(Z) = - gd2[Z( 1 

and La OP(x) = 22( 1 - z )  P(z)/S(z),  

L?OP(Z) = - 1 ([ log- 44&4 - 1 
2 

. z )  P(z)] /dz2,  G? OP(z) = 0,  (B 13c) 

(B 14a)  

d2 
dz2 
- [z( 1 - 2 )  P(z) ]  + (1 - 22) P’(z) 

]P( z ) ] ,  (B 14b) 
(S‘(0) +S’(l))z-S’(0) 

+[-+ S ( 4  

L;* OP(2) = Q(z( 1 - Z) /S (Z ) )?F(Z ) ,  (B 14d) 

1 2Z(l-Z) 
L$OP(Z) = - - [(S’( 1) + S’(0)) 2 - S‘(O)] P(z) 

35(2)( S ( 4  

(B 14f)  

I d2 
dz2 

+ -[z2(1 - z )~P(z)]  , (B 14e) 

L!.lF(z) = Qz( 1 - 2) {z( 1 - 2) F’(2) + 2( 1 - 22) P(z))/S(z). 

In  the expression for Li, O we have defined H ( z )  = d{z( 1 - z )  P(z))/dz. Equations 
(B 13) and (B 14) give the operators which are needed for the examples in $6. 

In general, i t  is easy to show by induction from (B 9) and (B 12) that for k 2 

+k(1-22)P(x)) if j = 1. (B 15) 

The result (B 15), when used with the result from (B 13) that G$j = 0 for k 2 2, 
shows that, whenever k 2 2, I i  is O ( S ~ ~ - ~ ~ )  as E approaches zero. 
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